Adonis Diaries

Posts Tagged ‘Algorithm


Arabic is one of the five most spoken languages in the world, with some 400 million users.

It’s also one of the most ancient, varied and beautifully scripted languages in existence.

Its influence on Spanish since the time of the Moors is well known, but what’s less well known is how many commonly used English words were actually taken from Arabic.

Here are just thirteen.

1. Alcohol

One of the most important words in the English language actually comes from the Arabic al-kuhl, (the kohl) which is a form of eyeliner.

Because the cosmetic was made via an extraction process from a mineral, European chemists began to refer to anything involving extraction / distillation as alcohol.

And that’s how the “alcohol of wine” (i.e. the spirit you get from distilling wine) got its name.

2. Algebra

From the Arabic al-jabr, which describes a reunion of broken parts, the use of the term came from a 9th century Arabic treatise on math.

The author’s name was al-Khwarizmi, which became the mathematical term algorithm. (Softwares are mostly algorithms)

3. Artichoke

The classical Arabic word, al-harshafa, became al-karshufa in Arabic-speaking Spain.

It has been adopted into French as artichaut, Italian as carciofo, Spanish as alcachofa, and English as artichoke.

4. Candy

Qand refers to crystallised juice of sugar cane, which is where Americans derive their word candy.

It originally came from Sanksrit, and was adopted into Arabic via the Persian language.

5. Coffee

Arabia originally got coffee from eastern Africa and called it qahwah.

Then it went to Turkey – kahve.

Then the Italians – caffè. 

And finally, it arrived in Britain as coffee.

6. Cotton

This plant is originally native to India and Central/South America,

7. Magazine

This word is derived from the Arabic makzin, which means storehouse.

We got it from the French (magasin, meaning shop), who got it from the Italians (magazzino), who got it from the Arabic.

8. Mattress

Sleeping on cushions was actually an Arabic invention.

Were it not for Arabic matrah, a place where the cushions were thrown down, the Europeans would never have adopted materacium / materatium (Latin) which passed through Italian into English as mattress.

9. Orange

Originally from South and East Asia, oranges were known in Sanskrit as naranga.

This became the Persian narang, which became the Arabic naranj.

Arabic traders brought oranges to Spain, which led to the Spanish naranja.

Then it went into old French as un norenge, then new French as une orenge.

Then we took it from the French and it became orange.

10. Safari

Safari is the Swahili word for an expedition, which is how it has become so associated with African bush and game tourism.

However, that Swahili word came from the Arabic safar, which means journey.

11. Sofa

The Arabic word suffa referred to a raised, carpeted platform on which people sat.

The word passed through the Turkish language to join English as sofa.

12. Sugar

Arabic traders brought sugar to Western Europe, calling it sukkar (originally from teh Sanskrit sharkara).

And last but not least…

13. Zero

Italian mathematician Fibonacci introduced the concept of zero to the Europeans in the 13th century.

He grew up in North Africa, and learned the Arabic word sifr, which means empty or nothing.

He Latinised it to zephrum, which became the Italian zero.

Because Roman numerals couldn’t express zero, he borrowed the number from Arabic.

Now, all our digits are known as Arabic numerals. 

Unorthodox Grigori Perelman (Fields Prize of mathematics); (Dec. 13, 2009)

The “Poincare conjecture” or (hypothesis) was stated in 1904 and says: “The sphere is the only compact space simply connected “connexe” in three dimensions” so that any curve drawn on the sphere can be deformed continuously until it is reduced to a point. This conjecture involved the research of many mathematicians.  And the Russian mathematician Grigori Perelman finally completely demonstrated it in 2006.

It is to be noted that the “Fermat conjecture” required over 4 centuries to be demonstrated.

The French mathematician and physicist Henry Poincare (1854-1912) is the founder of modern topology.  In order to resolve problems in celestial mechanics and relativity of N bodies, Poincare had to develop a new branch of theories in mathematics called “analysis situs” or geometry of situation.

Topology studies the invariant properties of continuously deformable spaces. For example, a balloon can be deformed continuously into a rugby ball and then to the shape of a bowl.

Grigori Perelman was born in Russia in 1966 and taught for several years at the University of Berkeley, California, and then returned to Russia in 1990.  Perelman worked on the conjecture in secrecy and then published the first of his three articles in 2002 on the internet.

Perelman already declined two international prizes, including the highest in mathematics or the Fields Prize.  The Clay foundation has one million dollars reserved for Perelman and we are not sure if he will decline the money too.

Actually, two more mathematicians working on the conjecture received the Fields Prize in 1966 and in 1986. Stephen Smale demonstrated in 1960 that in compact spaces of over 5 dimensions there are no simply connected “connexe”.

In 1982, Michael Freeman demonstrated the conjecture in four dimensions. Topology gained many theories and tools that are now standard that enabled Perelman to build on.

In 1970, William Thurston worked on the space of tangents to surfaces. At each point of the sphere, for example, the vector tangents passing by the point can be added or multiplied by any number; these vector spaces are called “tangent spaces”. Associated to each tangent space is a scalar product that measures the length and the angular deviation between the different couples of vectors.

The set of scalar products at points is called “Riemannian metric” and the space linked to this metric is called “Riemannian variety”. Thus, with this branch of mathematics we may define a distance between two points (on the sphere) which is the shortest curve that joins them or a “geodesic length”.  There are two characteristics for scalar metrics:

First, there are an infinite of possible metrics.  Special local metrics for Euclidian, spherical, and hyperbolic spaces are varieties that differ by the number of parallels to a straight line passing through an external point; for example, there exists only one parallel in Euclidian space, none for a sphere, and infinity of parallels for a hyperbolic space.

Second, a curve measures deviations of geodesic lengths and angles. For example, differences among the three varieties of spaces are related to the sum of the angles of a triangle. In Euclidean space we have exactly 180 degrees.  If the angle of the curve is independent of the corresponding point then we say the angle is constant. For Euclidean space we say the angle of the curve is constant, nil, or flat. In the spherical variety it is positive, and for the hyperbolic it is negative.

Work and research in Geometry in the 20th century lead to the following result: the geometry of surfaces in two dimensions is spherical on spheres, flat on shapes as buoy, and hyperbolic on all other surfaces.  Thus, Thurston proposed his conjecture on spaces of three dimensions “Any compact space of 3 dimensions can be decomposed in particular geometric pieces”

Peter Scott proved that only 8 possible compact spaces in 3 dimensions existed: the three topological kinds in 2 dimensions (Euclidian, spherical, and hyperbolic) and five topologies possessing important symmetrical groups.  Thus, it was sufficient to prove the existence of a spherical geometry on the compact 3 dimensions sphere.  Thurston resolved his own conjecture on many important particular cases but failed to generalize.  Analytical geometry was introduced as a tool in topology.

In the same year of 1982, Richard Hamilton extended a method to minimize a function (analogous to energy) that can be computed on Thurston curves.  Hamilton built a family of metrics “g” by continuous deformations in such a way that starting from any metrics it can lead to spherical geometry.

This family of metrics depended on a parameter that can metaphorically be viewed as time. The parameter satisfied the equation dg/dt = – 2 Ric (g(t)); Ric is a curve notion called “Ricci curve” or the measure of the difference in volume between Euclidean and Riemannian compact spaces. The equation is non linear (meaning the sum of two solutions is not generally a solution); it is part of partial derivative equation.  Thus, the equation admits but a unique family of metrics that equal a given metric at time zero or “small time”. Otherwise, non linear equations diverge in finite time.

The new scalar product defines how the metric varies with time and is called “flow of Ricci curve”.  Applying this equation on simply connected compact space of three dimensions should lead to a sphere.  Hamilton developed many tools to describe the evolution of these metrics; one of the tolls proved that if the starting metric has a strictly positive Ricci curve then the variety of compact simply connected space is a sphere. The a priori knowledge of the sign of the curve was not within the premises of Poincare conjecture because we have to start from a compact variety we know nothing about it.

Hamilton went even further in his research. He demonstrated that if a curve becomes infinitely positive with time then the flow of Ricci ends and the metric is no longer Riemannian but labeled “degenerate”.

To bypass these possibilities “singularities” Hamilton invented the “surgical method” of slicing the sections that stopped the Ricci flow and attached standard objects to the sectioned parts in order to resume the Ricci flow.  For example of standard objects we have cylinders in 3 dimensions and “hoods” that resemble semi-spheres.

Grigori Perelman described what happens in the vicinity where the Ricci flow ends and used two models of standard objects to resume the flow of Ricci. In points where the flow is normal we know nothing of its variety. Thus, if the curves are large at every point on the surface then the possible topologies are limited: the object is either a tore in 3 dimensions if the series are cylinders that fit inside one another or the object is a sphere if we attach two hoods. If the object admits only one hood then it is not compact.  If more than two hoods were attached then the object is no longer connected.

Consequently, Poincare conjecture was demonstrated if the curves are large everywhere and only two hoods were attached to the sliced sections. Perelman demonstrated that we can pursue this procedure without problems because in finite time there are finite “surgical” interventions.

Perelman proof also demonstrated Thurston conjecture. The proof of Poincare conjecture was done using a reasoning based on elementary topology but it cannot confirm that the metric tended to the spherical variety.

Richard Hamilton worked for 30 years on Poincare conjecture and he received his share of prizes but not the “Fields medal”.  He developed the methods and tools; he shrank from the insurmountable number of “singularity” to consider. Why? Is computer not a good enough mathematical tool? Is experimenting with variability not within the orthodox mathematical culture of elegance, simplicity, and beauty of deduction?

I still don’t know why Perelman declined the many mathematical prizes, including the “Fields medal”.  Is it because the order of mathematicians insists on given preference to the pen and paper demonstration of the “Greek” cultural bias?  Is it because most mathematicians abhor getting “dirty” using analytical methods that required massive computations for the exhaustive possibilities or “singularities”?

Maybe the order of mathematicians is ripe for a paradigm shift which states “All tools and methods that contribute to demonstrating mathematical theorems and problems are equally valid”.

Note: The Greek mathematicians have constructed mathematics different than that of the Mesopotamians and Egyptians who relied on algorithm and techniques based on counting and pacing and experimental alternatives.  Thus, there is a cautious move toward using computer and computational facilities and newer tools that smack of experimentation.

The order of mathematicians is most conforming to Greek cultural bias in solving problems; the last two centuries exacerbated this bias because Europe badly needed to relate to a Greek civilization.  The mathematicians basing their ideology on “elegant, beautiful, and simple” deductive methods for proofs have lost sight of the purpose of demonstrating theorems.  The goal is to prove and move on so that scientists may adapt theorems to their fields of study and then move on.

Europe’s “Renaissance” is Islamic; (October 19, 2009)

This post will demonstrate that Europe’s “renaissance” in the scientific disciplines and scientific research methods could not have been launched without the import of Islamic scientific manuscripts and knowledge in the sciences and mathematics.

In a previous post I demonstrated that the Catholic Church of Rome was the most obscurantist religion from 400 AC (when it exercised central power to Europe) till late 16th century: no scientific manuscripts or “heretic” opinions were permitted to reach her sphere of spiritual and temporary influence. During all that period, Europe’s borders were practically opened to all kinds of trades except in two instances after the Crusaders were kicked out from the Orient about 1200 and when Constantinople fell to the Ottoman Empire in around 1450.

Europe didn’t dare challenge the Papal restrictions to knowledge until Martin Luther weakened the central religious power.  This qualitative shift was long due for a modern paradigm.  Islam never adopted any centralized religious power and thus managed to acquire knowledge “even from China” as the Prophet Muhammad admonished the Moslems.

In the same vein, Orthodox Christian Church of Byzantium was the obscurantist central religious power in Constantinople that wasted four centuries on the Near East region to produce any worthwhile scientific advancement. This region had to wait for Islamic Empires to conquer most of the Near East from the Byzantium Empire for sciences to get a new lease on life.

Islam civilization had fundamentally the zest to acquiring scientific knowledge, while feeling confident that the One and only God is a rational creator.  Without the breakout from Papal influence, Europe would have never greedily acquired Islamic scientific manuscripts and then translate them into Greek, Latin, and German and thus move on to experience renaissance.

After the 17th century, Papal Rome hurried to catch up with the trend and exhibited the will to show off that the Catholic Church is the main conservator of sciences and its promoter.

As a brief post, it will refrain from being exhaustive. The medical field was highly developed. Al Razi treaties were translated as early as the 13th century by Gerard de Cremone.  Ibn Sina (Avicenna), an acclaimed physician and eminent philosopher wrote many books on medicine and in pharmacopeia; his main translated medical manuscript was the basic source in Europe as late as the 18th century.

The renowned mathematician Al Khwarismi (820 AC) wrote “The beginning of algebra” (Kitab al Jabr); he developed what is known as algorithm; in his honor Europe gave this field of math his name (Algorithm).  Ibn Yahya al Maghrebi wrote “The brilliance in algebra” (al baahir fil Jaber). Actually, current mathematicians have discovered that an ancient Islamic mathematician solved Fermat theorem that was stated in 1620 and which took centuries to be demonstrated lately in Europe.

The Element of Euclid in geometry was translated by Al Hajjaj in the 9th century and commented extensively by Al Tusi.  Al Biruni founded the geodesic and mineralogy disciplines.  Around 770 Caliphate Al Mansur hired Indian astronomers.  Caliphate Al Maamun built the first observatory on mount Qassioun by Damascus around 830 and astronomy received a new impetus: Al Fazari and Yaaqub ibn Yarid adapt the Indian astronomy table Zij al Sindhind; the Almageste of Ptolemy is translated and Al Farghani wrote a compendium on the sciences of stars; Thabit ibn Qurra works on the Book of Solar Year; and Al Batani wrote the Sabean Tables.

The mathematician and astronomer Ibn Al Haytham (Alhacen) in the 11th century developed strong doubts on Ptolemy cosmology model and offered several updated models; he presented the concept that it is not productive to do astronomy and physics before acquiring firm knowledge in mathematics. Al Haytham offered a mathematical model for astronomy instead of the cosmology alternative of drawing schemas of the world with concentric circles and other schematic models.

Kepler (see note 1) adopted Al Haytham line of investigation in studying astronomy.  As a matter of fact, European educational systems of sciences focus mostly on mathematics as primary disciple before venturing into studying sciences.

The newly radical Islamist Mogul invaded Damascus and were defeated by the Mamluk’s Empires of Egypt.  The Mogul Hulago built the famous observatory of Maragha (Nizamiyya) in Mosul (Iraq). This observatory was the center of astronomy for thirty continuous years and graduated famous scientists.

The center was directed by the eminent mathematician and jurist the Persian Kamal al Din Ibn Yunus. Among the astronomers were Al Urdi, Al Tusi, Al Shirazi, Zij Ilkhani, and Ibn al Shatir.  Al Tusi proposed different cosmological models with non-concentric circles. Ibn Al Shatir synthesized the models for the Universe perfectly geocentric and completely different of Ptolemy’s. Copernicus adopted integrally Al Shatir’s cosmology; he even replaced the exact Arabic alphabet with the Latin counterparts; Copernicus didn’t need a translated version since the schema was self-evident.

Islamic Andalusia (Spain) (from 800 to 1,400) took the rationality relay as the central power in Baghdad weakened around 1050 by the arrival of newly radical converted princes from the central Asia provinces and the Caucasus.  Ibn Baja, Ibn Tofail, Ibn Rushd were the prominent thinkers whose works were quickly disseminated in Spain and Padua (Italy).

Europe’s “Renaissance” was becoming receptive to knowledge after 11 centuries of the Dark Age that was imposed upon it by the Catholic Church of Rome. Albert the Great, Dietrich of Freiberg, and Master Eckhart were avid readers of Islamic scientific manuscripts of Avicenna, Maimonides, and Averroes (Ibn Rushd).  The Prussian Emperor Frederic the Great was educated in Sicily and received his knowledge directly from Islamic sources.

Note 1:

Note 2: I stated historical facts; it is by no means a completely coherent model for the genesis of European civilization; it would be advisable to refrain from extrapolations at this stage.




August 2020

Blog Stats

  • 1,404,898 hits

Enter your email address to subscribe to this blog and receive notifications of new posts by

Join 755 other followers

%d bloggers like this: