Adonis Diaries

Posts Tagged ‘“natural selection”

Who care to see Reality as Is? Who can we trust to deliver “what is Reality”?

Note: Re-edit of “Are we able to see Reality as is? July 2015 and Donald Hoffman speech on March 2015”

Let’s begin with a question: Do we see reality as it is?

Are we shaped with tricks and hacks that keep us alive (evolutionary process)?

I love a great mystery, and I’m fascinated by the greatest unsolved mystery in sciences, perhaps because it’s personal.

It’s about who we are, and I can’t help but be curious.

The mystery is this: 

What is the relationship between your brain and your conscious experiences, such as your experience of the taste of chocolate or the feeling of velvet?

This mystery is not new. In 1868, Thomas Huxley wrote,

“How it is that anything so remarkable as a state of consciousness comes about as the result of irritating nervous tissue is just as unaccountable as the appearance of the genie when Aladdin rubbed his lamp.”

Huxley knew that brain activity and conscious experiences are correlated, but he didn’t know why.

To the sciences of his day, it was a mystery. In the years since Huxley, sciences have learned a lot about brain activity, but the relationship between brain activity and conscious experiences is still a mystery. Why?

Why have we made so little progress?

Some experts think that we can’t solve this problem because we lack the necessary concepts and intelligence.

We don’t expect monkeys to solve problems in quantum mechanics, and as it happens, we can’t expect our species to solve this problem either.

Well, I disagree. I’m more optimistic. 

I think we’ve simply made false assumptions, one assumption in particular.

Once we fix it, we just might solve this problem. Today, I’d like tell you what that assumption is, why it’s false, and how to fix it.

Let’s begin with a question: Do we see reality as it is?

Does natural selection really favor seeing reality as it is?

Aren’t we reconstructing “reality” everytime?

I open my eyes and I have an experience that I describe as a red tomato a meter away. As a result, I come to believe that in reality, there’s a red tomato a meter away.

I then close my eyes, and my experience changes to a gray field, but is it still the case that in reality, there’s a red tomato a meter away? I think so, but could I be wrong? 

Could I be misinterpreting the nature of my perceptions?

We have misinterpreted our perceptions before. We used to think the Earth is flat, because it looks that way. Pythagoras discovered that we were wrong.

Then we thought that the Earth is the unmoving center of the Universe, again because it looks that way. Copernicus and Galileo discovered, again, that we were wrong.

Galileo then wondered if we might be misinterpreting our experiences in other ways. He wrote:

I think that tastes, odors, colors, and so on reside in consciousness. Hence if the living creature were removed, all these qualities would be annihilated.” (Meaning, nature and its plants have their own consciousness, regardless of the disappearance of living creatures?)

That’s a stunning claim. Could Galileo be right? Could we really be misinterpreting our experiences that badly? What does modern science have to say about this?

Neuroscientists tell us that about a third of the brain’s cortex is engaged in vision. When you simply open your eyes and look about this room, billions of neurons and trillions of synapses are engaged.

This is a bit surprising, because to the extent that we think about vision at all, we think of it as like a camera.

It just takes a picture of objective reality as it is. Now, there is a part of vision that’s like a camera: the eye has a lens that focuses an image on the back of the eye where there are 130 million photoreceptors, so the eye is like a 130-megapixel camera.

But that doesn’t explain the billions of neurons and trillions of synapses that are engaged in vision. What are these neurons up to?

Neuro-scientists tell us that they are creating, in real time, all the shapes, objects, colors, and motions that we see. 

It feels like we’re just taking a snapshot of this room the way it is, but in fact, we’re constructing everything that we see. We don’t construct the whole world at once. We construct what we need in the moment.

Now, there are many demonstrations that are quite compelling that we do construct what we see. I’ll just show you two.

In this example, you see some red discs with bits cut out of them, but if I just rotate the disks a little bit, suddenly, you see a 3D cube pop out of the screen. Now, the screen of course is flat, so the three-dimensional cube that you’re experiencing must be your construction.

In this next example, you see glowing blue bars with pretty sharp edges moving across a field of dots. In fact, no dots move. All I’m doing from frame to frame is changing the colors of dots from blue to black or black to blue. But when I do this quickly, your visual system creates the glowing blue bars with the sharp edges and the motion. 

There are many more examples, but these are just two that you construct what you see.

But neuroscientists go further. They say that we reconstruct reality. So, when I have an experience that I describe as a red tomato, that experience is actually an accurate reconstruction of the properties of a real red tomato that would exist even if I weren’t looking.

Why would neuroscientists say that we don’t just construct, we reconstruct?

The standard argument given is usually an evolutionary one. The notion that “Our ancestors who saw more accurately had a competitive advantage compared to those who saw less accurately, and therefore they were more likely to pass on their genes…” (This hypothesis didn’t withstand investigation).

We are the offspring of those who saw more accurately, and so we can be confident that, in the normal case, our perceptions are accurate. 

You see this in the standard textbooks. One textbook says, for example, “Evolutionarily speaking, vision is useful precisely because it is so accurate.” So the idea is that accurate perceptions are fitter perceptions. They give you a survival advantage.

Now, is this correct? Is this the right interpretation of evolutionary theory? 

Let’s first look at a couple of examples in nature.

The Australian jewel beetle is dimpled, glossy and brown. The female is flightless. The male flies, looking for a hot female. When he finds one, he alights and mates.

There’s another species in the outback, Homo sapiens. The male of this species has a massive brain that he uses to hunt for cold beer. (Laughter) And when he finds one, he drains it, and sometimes throws the bottle into the outback.

Now, as it happens, these bottles are dimpled, glossy, and just the right shade of brown to tickle the fancy of these beetles. The males swarm all over the bottles trying to mate. They lose all interest in the real females.

Classic case of the male leaving the female for the bottle. (Laughter)  The species almost went extinct.

Australia had to change its bottles to save its beetles. (Laughter)

Now, the males had successfully found females for thousands, perhaps millions of years. It looked like they saw reality as it is, but apparently not. Evolution had given them a hack.

A female is anything dimpled, glossy and brown, the bigger the better. (Laughter) Even when crawling all over the bottle, the male couldn’t discover his mistake.

You might say, beetles, sure, they’re very simple creatures, but surely not mammals. Mammals don’t rely on tricks. Well, I won’t dwell on this, but you get the idea. (Laughter)

So this raises an important technical question: Does natural selection really favor seeing reality as it is?

Fortunately, we don’t have to wave our hands and guess; evolution is a mathematically precise theory. We can use the equations of evolution to check this out. We can have various organisms in artificial worlds compete and see which survive and which thrive, which sensory systems are more fit.

A key notion in those equations is fitness.

Consider this steak: What does this steak do for the fitness of an animal? Well, for a hungry lion looking to eat, it enhances fitness. For a well-fed lion looking to mate, it doesn’t enhance fitness.

And for a rabbit in any state, it doesn’t enhance fitness, so fitness does depend on reality as it is, yes, but also on the organism, its state and its action.

Fitness is not the same thing as reality as it is.

And it’s fitness, and not reality as it is, that figures centrally in the equations of evolution.

In my lab, we have run hundreds of thousands of evolutionary game simulations with lots of different randomly chosen worlds and organisms that compete for resources in those worlds.

Some of the organisms see all of the reality, others see just part of the reality, and some see none of the reality, only fitness. Who wins?

In almost every simulation, organisms that see none of reality but are just tuned to fitness drive to extinction all the organisms that perceive reality as it is. So the bottom line is, evolution does not favor vertical, or accurate perceptions. Those perceptions of reality go extinct.

I hate to break it to you, but perception of reality goes extinct (compared to fitness)

This is a bit stunning. How can it be that not seeing the world accurately gives us a survival advantage?

That is a bit counterintuitive. But remember the jewel beetle. The jewel beetle survived for thousands, perhaps millions of years, using simple tricks and hacks.

What the equations of evolution are telling us is that all organisms, including us, are in the same boat as the jewel beetle. We do not see reality as it is. We’re shaped with tricks and hacks that keep us alive.

Still, we need some help with our intuitions.

How can not perceiving reality as it is be useful? Well, fortunately, we have a very helpful metaphor: the desktop interface on your computer.

Consider that blue icon for a TED Talk that you’re writing. Now, the icon is blue and rectangular and in the lower right corner of the desktop. Does that mean that the text file itself in the computer is blue, rectangular, and in the lower right-hand corner of the computer? Of course not.

Anyone who thought that misinterprets the purpose of the interface. It’s not there to show you the reality of the computer. In fact, it’s there to hide that reality.

You don’t want to know about the diodes and resistors and all the megabytes of software. If you had to deal with that, you could never write your text file or edit your photo.

So the idea is that evolution has given us an interface that hides reality and guides adaptive behavior. 

Space and time, as you perceive them right now, are your desktop. Physical objects are simply icons in that desktop.

There’s an obvious objection.

Now, if you think that train coming down the track at 200 MPH is just an icon of your desktop, why don’t you step in front of it?

And after you’re gone, and your theory with you, we’ll know that there’s more to that train than just an icon.

Well, I wouldn’t step in front of that train for the same reason that I wouldn’t carelessly drag that icon to the trash can: not because I take the icon literally — the file is not literally blue or rectangular — but I do take it seriously. I could lose weeks of work. 

Similarly, evolution has shaped us with perceptual symbols that are designed to keep us alive. We’d better take them seriously.

If you see a snake, don’t pick it up. If you see a cliff, don’t jump off. They’re designed to keep us safe, and we should take them seriously. That does not mean that we should take them literally. That’s a logical error.

Another objection: There’s nothing really new here. 

Physicists have told us for a long time that the metal of that train looks solid but really it’s mostly empty space with microscopic particles zipping around.

There’s nothing new here. Well, not exactly. It’s like saying, I know that that blue icon on the desktop is not the reality of the computer, but if I pull out my trusty magnifying glass and look really closely, I see little pixels, and that’s the reality of the computer. Well, not really — you’re still on the desktop, and that’s the point.

Those microscopic particles are still in space and time: they’re still in the user interface. So I’m saying something far more radical than those physicists.

Finally, you might object, look, we all see the train, therefore none of us constructs the train.

But remember this example. In this example, we all see a cube, but the screen is flat, so the cube that you see is the cube that you construct. We all see a cube because we all, each one of us, constructs the cube that we see.

The same is true of the train. We all see a train because we each see the train that we construct, and the same is true of all physical objects.

We’re inclined to think that perception is like a window on reality as it is. The theory of evolution is telling us that this is an incorrect interpretation of our perceptions.

Instead, reality is more like a 3D desktop that’s designed to hide the complexity of the real world and guide adaptive behavior. Space as you perceive it is your desktop. Physical objects are just the icons in that desktop.

We used to think that the Earth is flat because it looks that way. Then we thought that the Earth is the unmoving center of reality because it looks that way. We were wrong. We had misinterpreted our perceptions.

Now we believe that spacetime and objects are the nature of reality as it is. The theory of evolution is telling us that once again, we’re wrong.

We’re misinterpreting the content of our perceptual experiences. There’s something that exists when you don’t look, but it’s not spacetime and physical objects.

It’s as hard for us to let go of spacetime and objects as it is for the jewel beetle to let go of its bottle. Why?

Because we’re blind to our own blindnesses. But we have an advantage over the jewel beetle: our science and technology.

By peering through the lens of a telescope we discovered that the Earth is not the unmoving center of reality, and by peering through the lens of the theory of evolution we discovered that spacetime and objects are not the nature of reality.

When I have a perceptual experience that I describe as a red tomato, I am interacting with reality, but that reality is not a red tomato and is nothing like a red tomato.

Similarly, when I have an experience that I describe as a lion or a steak, I’m interacting with reality, but that reality is not a lion or a steak.

And here’s the kicker: When I have a perceptual experience that I describe as a brain, or neurons, I am interacting with reality, but that reality is not a brain or neurons and is nothing like a brain or neurons.

And that reality, whatever it is, is the real source of cause and effect in the world — not brains, not neurons. Brains and neurons have no causal powers. They cause none of our perceptual experiences, and none of our behavior. 

Brains and neurons are a species-specific set of symbols, a hack.

What does this mean for the mystery of consciousness? Well, it opens up new possibilities.

For instance, perhaps reality is some vast machine that causes our conscious experiences. I doubt this, but it’s worth exploring.

Perhaps reality is some vast, interacting network of conscious agents, simple and complex, that cause each other’s conscious experiences. Actually, this isn’t as crazy an idea as it seems, and I’m currently exploring it.

But here’s the point: Once we let go of our massively intuitive but massively false assumption about the nature of reality, it opens up new ways to think about life’s greatest mystery.

I bet that reality will end up turning out to be more fascinating and unexpected than we’ve ever imagined.

The theory of evolution presents us with the ultimate dare: 

Dare to recognize that perception is not about seeing truth, it’s about having kids. And by the way, even this TED is just in your head.

19:31 Chris Anderson: If that’s really you there, thank you. So there’s so much from this. I mean, first of all, some people may just be profoundly depressed at the thought that, if evolution does not favor reality, I mean, doesn’t that to some extent undermine all our endeavors here, all our ability to think that we can think the truth, possibly even including your own theory, if you go there?

 Donald Hoffman: Well, this does not stop us from a successful science. What we have is one theory that turned out to be false, that perception is like reality and reality is like our perceptions. That theory turns out to be false.

Okay, throw that theory away. That doesn’t stop us from now postulating all sorts of other theories about the nature of reality, so it’s actually progress to recognize that one of our theories was false. So science continues as normal. There’s no problem here.

20:22 CAThis is cool, but what you’re saying I think is it’s possible that evolution can still get you to reason.

DH: Yes. Now that’s a very, very good point. The evolutionary game simulations that I showed were specifically about perception, and they do show that our perceptions have been shaped not to show us reality as it is, but that does not mean the same thing about our logic or mathematics.

We haven’t done these simulations, but my bet is that we’ll find that there are some selection pressures for our logic and our mathematics to be at least in the direction of truth. I mean, if you’re like me, math and logic is not easy.

We don’t get it all right, but at least the selection pressures are not uniformly away from true math and logic. So I think that we’ll find that we have to look at each cognitive faculty one at a time and see what evolution does to it.

What’s true about perception may not be true about math and logic.

CA: I mean, really what you’re proposing is a kind of modern-day Bishop Berkeley interpretation of the world: consciousness causes matter, not the other way around.

DH: Well, it’s slightly different than Berkeley. Berkeley thought that, he was a deist, and he thought that the ultimate nature of reality is God and so forth, and I don’t need to go where Berkeley’s going, so it’s quite a bit different from Berkeley. I call this conscious realism. It’s actually a very different approach.

Donald Hoffman on March 2015

Note 1: The way I comprehended this awesome speech is:

1. There are only 2 realities:  The survival process of the species and Death

2. If mankind tampers with the survival process we are doomed (as we already decimated countless other species)

3. We don’t love Death. We don’t love making babies: we just deal with this survival reality as best we can.

4. Love is not within the realm of making babies: we just fall in love.

5. If we try to keep mathematics and logic out of the survival process, then we are Not allowing them to give us new ideas on the topic of survival

Note 2: I like to expand this concept a little further. After many trials in the living, we settle in a “comfort zone” and we stick to this zone and let the advertisers and politicians abuse of our perception of what is reality. We become the Silent Majority in a society. Unless we get out of our comfort zone again and again, we deny ourselves and our descendents the advantage of the survival process.

Still Talking about Darwin?

I’m going around the world giving talks about Darwin, and usually what I’m talking about is Darwin’s strange inversion of reasoning.

Now that title, that phrase, comes from a critic, an early critic, and this is a passage that I just love, and would like to read for you.

Why are babies cute? Why is cake sweet?

Philosopher Dan Dennett has answers you wouldn’t expect, as he shares evolution’s counter-intuitive reasoning on cute, sweet and sexy things (plus a new theory from Matthew Hurley on why jokes are funny).

0:28 “In the theory with which we have to deal, Absolute Ignorance is the artificer; so that we may enunciate as the fundamental principle of the whole system, that, in order to make a perfect and beautiful machine, it is not requisite to know how to make it. This proposition will be found on careful examination to express, in condensed form, the essential purport of the Theory, and to express in a few words all Mr. Darwin’s meaning; who, by a strange inversion of reasoning, seems to think Absolute Ignorance fully qualified to take the place of Absolute Wisdom in the achievements of creative skill.”

1:09 Exactly. Exactly. And it is a strange inversion. A creationist pamphlet has this wonderful page in it: “Test Two: Do you know of any building that didn’t have a builder? Yes/No. Do you know of any painting that didn’t have a painter? Yes/No. Do you know of any car that didn’t have a maker? Yes/No. If you answered ‘Yes’ for any of the above, give details.”

1:38 A-ha! I mean, it really is a strange inversion of reasoning. You would have thought it stands to reason that design requires an intelligent designer. But Darwin shows that it’s just false.

1:54 Today, though, I’m going to talk about Darwin’s other strange inversion, which is equally puzzling at first, but in some ways just as important.

It stands to reason that we love chocolate cake because it is sweet. Guys go for girls like this because they are sexy. We adore babies because they’re so cute. And, of course, we are amused by jokes because they are funny.

2:31 This is all backwards. It is.

And Darwin shows us why. Let’s start with sweet. Our sweet tooth is basically an evolved sugar detector, because sugar is high energy, and it’s just been wired up to the preferer, to put it very crudely, and that’s why we like sugar.

Honey is sweet because we like it, not “we like it because honey is sweet.” There’s nothing intrinsically sweet about honey. If you looked at glucose molecules till you were blind, you wouldn’t see why they tasted sweet.

You have to look in our brains to understand why they’re sweet.

So if you think first there was sweetness, and then we evolved to like sweetness, you’ve got it backwards; that’s just wrong. It’s the other way round. Sweetness was born with the wiring which evolved.

3:32 And there’s nothing intrinsically sexy about these young ladies.

And it’s a good thing that there isn’t, because if there were, then Mother Nature would have a problem: How on earth do you get chimps to mate? Now you might think, ah, there’s a solution: hallucinations.

That would be one way of doing it, but there’s a quicker way. Just wire the chimps up to love that look, and apparently they do. That’s all there is to it. Over six million years, we and the chimps evolved our different ways. We became bald-bodied, oddly enough; for one reason or another, they didn’t. If we hadn’t, then probably this would be the height of sexiness.

4:38 Our sweet tooth is an evolved and instinctual preference for high-energy food. It wasn’t designed for chocolate cake. Chocolate cake is a super-normal stimulus.

The term is owed to Niko Tinbergen, who did his famous experiments with gulls, where he found that that orange spot on the gull’s beak — if he made a bigger, orange spot the gull chicks would peck at it even harder. It was a hyper-stimulus for them, and they loved it.

What we see with, say, chocolate cake is it’s a supernormal stimulus to tweak our design wiring. And there are lots of supernormal stimuli; chocolate cake is one. There’s lots of supernormal stimuli for sexiness.

5:19 And there’s even supernormal stimuli for cuteness. Here’ s a pretty good example. It’s important that we love babies, and that we not be put off by, say, messy diapers. So babies have to attract our affection and our nurturing, and they do. And, by the way, a recent study shows that mothers prefer the smell of the dirty diapers of their own baby.

So nature works on many levels here. But now, if babies didn’t look the way they do — if babies looked like this, that’s what we would find adorable, that’s what we would find — we would think, oh my goodness, do I ever want to hug that. This is the strange inversion.

6:03 Well now, finally what about funny. My answer is, it’s the same story, the same story. This is the hard one, the one that isn’t obvious. That’s why I leave it to the end. And I won’t be able to say too much about it. But you have to think evolutionarily, you have to think, what hard job that has to be done — it’s dirty work, somebody’s got to do it — is so important to give us such a powerful, inbuilt reward for it when we succeed.

Now, I think we’ve found the answer — I and a few of my colleagues. It’s a neural system that’s wired up to reward the brain for doing a grubby clerical job. Our bumper sticker for this view is that this is the joy of debugging.

Now I’m not going to have time to spell it all out, but I’ll just say that only some kinds of debugging get the reward. And what we’re doing is we’re using humor as a sort of neuroscientific probe by switching humor on and off, by turning the knob on a joke — now it’s not funny … oh, now it’s funnier … now we’ll turn a little bit more … now it’s not funny — in this way, we can actually learn something about the architecture of the brain, the functional architecture of the brain.

7:24 Matthew Hurley is the first author of this. We call it the Hurley Model. He’s a computer scientist, Reginald Adams a psychologist, and there I am, and we’re putting this together into a book. Thank you very much.

Philosopher, cognitive scientist
Dan Dennett argues that human consciousness and free will are the result of physical processes. His latest book is “Intuition Pumps and Other Tools for Thinking,” Full bio
This talk was presented at an official TED conference, and was featured by our editors on the home page.

Related talks

Manu Manjunath

The fact that we find puppies cute may be an artifact of wiring that has other purposes. We certainly don’t depend on chocolate cake for survival either. We are mistaken to think that all thought, feeling or action is *directly* related to survival. I’m not saying the following example is the explanation, but it illustrates the concept.

The video explains that babies are cute because we’re wired to find them cute, and offers a rationale. Perhaps as a result of this, we react to faces in the animal kingdom that resemble baby faces – round face, large eyes for example.

Even physiological mutation is not always subject to natural selection.

For example, fibrinopeptides are the fastest-evolving molecules – they evolve at the baseline mutation rate. Natural selection appears more tolerant of their variation – perhaps because the body has other ways of compensating. (note – other molecules may mutate at similar accelerated rates, but natural selection weeds the variations out so we do not see the variation in the gene pool: natural selection is not tolerant of their variation).

Big brains brought self-awareness and the ability for abstract thought; this opened the door to all kinds of complexities that may not be *directly* tied to survival.

I might appreciate a painting that you find hideous. I doubt that fact will determine which of us survives, but perhaps creativity will survive better in certain cultures, or perhaps some cultures will survive better with a certain mix of literal and creative minds. Natural selection has produced this mix.

I recommend Dawkins’ The Blind Watchmaker and The Selfish Gene. Fascinating and eminently readable – even for dummies like me.

Certain traits of babies, especially of mammals, repeat themselves: a big head, delicate body, big eyes etc. If you stop to think about it, kittens, puppies, human babies, and of primates in general, share these traits, which is why we find them cute.

This also explains, for example, why we don’t find bird babies or fish babies cute: they do not follow these standards. It’s not a question of evolving to find them cute, but evolving to find certain traits our own babies have cute, and extrapolating this response to other animals that have them too.

Víctor Chagas

I agree, there are similarities in features among ‘all’ kinds of infant mammals that would have evolved long before our species did. So what we find cute includes non-human mammals too, because we have evolved from previous ancestor species whose ‘cute babies survived better’. We (and dogs, cats, hamsters, horses, etc…) have all evolved from very cute rat-like things that outlived the last dinosaurs of the Jurassic.

Also, we’ve been domesticating dogs and cats for perhaps 10,000 years and there are many times throughout our species’ history where at least having close relationships with dogs may have been important for survival, so maybe we do a better job of finding puppies cute than say, baby rats.


adonis49

adonis49

adonis49

October 2020
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  

Blog Stats

  • 1,428,324 hits

Enter your email address to subscribe to this blog and receive notifications of new posts by email.adonisbouh@gmail.com

Join 775 other followers

%d bloggers like this: