Posts Tagged ‘occupational safety and health’
Article 25, September 11, 2005
“My pet project for undergraduate engineering curriculum”
My aim is to produce hybrid scientists or engineers with Human Factors background in undergraduate curriculum. Undergraduate university students must enjoy a comprehensive curriculum initiating them to methods applied in both hard and soft sciences. Basically, students must be knowledgeable in the various ways of designing experiment, which is the common denominator methods, taught implicitly but never satisfactorily because the logic is not that straighforward unless exposed explicitly and trained.
Undergraduate engineering disciplines must require courses in experimental research and statistical analyses training and drawn from multidisciplinary social sciences so that they can be better positioned to handle research involving mathematical modeling of theories in sciences.
I believe that at least 6 courses should be included in any engineering field involved in system design, which are: “Human Factors” in 2 courses, “Design for inferential experiments” and “Structural linear equations modeling applying the statistical analytical package LISREL”, “Human performance”, “Systems risk assessments”, and “Occupational safety and health”.
It is advisable that engineering departments, architecture and any field involved in designing systems or subsystems, with the avowed mission of reducing errors committed by end users in the application and maintenance of their tasks, need to offer 3 required courses and three elective courses related to the factors that affect the performance of end users.
These courses are meant mainly to designing interfaces between systems and end users, whether the latter are engineers, operators, workers, technicians or consumers, but they are also important for the designers of the systems to be cognizant of the problems related to the capabilities, limitations and behavior of end users who will ultimately break or implement any well-intentioned and best designed systems from textbook standards and processes.
The first required Human Factors course would be an introduction to the basics in designing for people, the physical and cognitive capabilities and limitations of end users, the environmental and organizational factors that may affect performance and the physical/mental applications and methods for designing interfaces between systems and end users.
The second Human Factors course, which could be elective, would initiate designers to actually design an interface with the needed experiments relevant to validating the requirements and guidelines that foresee the compatibility of the system performance with the level of skills and training required by the end users. A designed interface would be accompanied by facilitating aids, procedures and functional booklets to enable end users for ready application.
The third course called “Design of experiments” is to initiate designers on efficient designed experiments that would save time, effort and money with the additional result of accounting for the interactions among all the factors under study and providing designers with facts that they could readily apply in their design endeavors. This course is not meant to dwell heavily on the mathematical basis for the statistical analysis, which requires another follow-up course, but to form scientific minds which can critically analyze research papers and the experimental procedures that encourage designers to start reading research papers and appreciating the materials that would form the basis for their continuing education.
The fourth course called “Systems risk assessments” would initiate designers to the trade-off decisions of the safety and health risks on the users, environment and organizational structures in societies and the financial cost from the adoption of technologically complex alternative designs.
The fifth course called “Occupational safety and health”, in addition to initiating the engineers on the laws and processes for a safe work place, will also encompass the concept of consumer’s product liability and forensic engineering. A designer needs to be familiar with the problems and consequences of his designs to the end users, their idiosyncrasies and cultural differences in using any product or manufacturing process design in an occupational setting. The knowledge of the standards and applicable laws and guidelines for a safe and healthy manufacturing or processing plant can make a substantial difference among graduating engineers not only in their people communication skills and designing performance but also for later promotions in any administrative or organizational positions.
The sixth course “Human performance” is designed to providing the skills and training necessary to designing and evaluating the performance of interfaces. Examples of these skills include the development of written instructions, designing relevant questionnaires to assess the characteristics and training skills of target users and how well the interface is performing, designing performance aids to helping the short-term memory of operators, formatting instructions and information, input data display formats, output formats, coding design, personnel selection, determining qualifications and any written or verbal technique or method necessary to testing, evaluating and quantifying operators’ performance.
An informed engineering designer, who can define the limitations, skills and needs of the target users for his interface and who is trained early on in his academic years to the consequences of his tasks, may save end users from committing many foreseeable errors, greatly alleviate their physical and mental anguish, suffering, pain and inefficiency and thus save his sponsors time and money for later redesign undertaking.
The afore-mentioned courses, if offered in the first 2 years of the curriculum, might provide the undergraduate students with a different perspective toward the remaining core courses that enhance the seriousness of his responsibilities and the importance of his profession.
I frankly cannot conceive of an engineer pursuing higher graduate studies without being exposed to the fundamental necessity of designing to target users. Engineering is an applied science for practical human needs and not knowing the needs and behavior of target users then the engineer’s design endeavor might be flawed from the start.