Adonis Diaries

Posts Tagged ‘restricted relativity

Einstein speaks on General Relativity; (Nov. 20, 2009)

I have already posted two articles in the series “Einstein speaks on…” This article describes Einstein’s theory of restricted relativity and then his concept for General Relativity. It is a theory meant to extend physics of fields (for example electrical and magnetic fields among others) to all natural phenomena, including gravity. Einstein declares that there was nothing speculative in his theory but it was adapted to observed facts.

The fundamentals are that the speed of light is constant in the void and that all systems of inertia are equally valid (each system of inertia has its own metric time). The experience of Michelson has demonstrated these fundamentals. The theory of restrained relativity adopts the continuum of space coordinates and time as absolute since they are measured by clocks and rigid bodies with a twist: the coordinates become relative because they depend on the movement of the selected system of inertia.

The theory of General Relativity is based on the verified numerical correspondence of inertia mass and weight. This discovery is obtained when coordinates posses relative accelerations with one another; thus each system of inertia has its own field of gravitation. Consequently, the movement of solid bodies does not correspond to the Euclid geometry as well as the movement of clocks. The coordinates of space-time are no longer independent. This new kind of metrics existed mathematically thanks to the works of Gauss and Riemann.

Ernst Mach realized that classical mechanics movement is described without reference to the causes; thus, there are no movements but those in relation to other movements.  In this case, acceleration in classical mechanics can no longer be conceived with relative movement; Newton had to imagine a physical space where acceleration would exist and he logically announced an absolute space that did not satisfy Newton but that worked for two centuries. Mach tried to modify the equations so that they could be used in reference to a space represented by the other bodies under study.  Mach’s attempts failed in regard of the scientific knowledge of his time.

We know that space is influenced by the surrounding bodies and so far, I cannot think the general Relativity may surmount satisfactorily this difficulty except by considering space as a closed universe, assuming that the average density of matters in the universe has a finite value, however small it might be.

Einstein speaks his mind processes on the origin of General Relativity; (Nov. 21, 2009)

This article is on  how Einstein described his mind processes that lead to the theory of restricted relativity and then his concept for General Relativity. In 1905, restricted relativity discovered the equivalence of all systems of inertia for formulating physics equations.

From a cinematic perspective, there was no way to doubting relative movements. Still, there was the tendency among physicists to physically extend privileged significance to system of inertia.  The question was “if speed is relative then, do we have to consider acceleration as absolute?”

Ernest Mach considered that inertia did not resist acceleration except when related to the acceleration toward other masses. This idea impressed Einstein greatly.  Einstein said: ” First, I had to establish a law of gravitation field and suppress the concept of absolute simultaneity. Simplicity urged me to maintain Laplace’s “scalar gravity potential” and fine tune Poisson’s equation.

Given the theorem of inertia of energy then, inertia mass must be depended on gravitation potential; but my research left me skeptical. In classical mechanics, vertical acceleration in a vertical field of gravity is independent of the horizontal component of velocity; it follows that vertical acceleration is exercised independently of the internal kinetic energy of the body in movement.

I discovered that this independence did not exist in my draft theory; this evidence did not coincide with the affirmation that all bodies submit to the same acceleration in a gravitational field. Thus, the principle that there is equality between inertia mass and weight grew with striking significance. I was convinced of its validity, though I had no knowledge of the results of experiments done by Eotvos.”

Consequently, the principle of equality between inertia mass and weight would be explained as follows: in a homogeneous gravitational field, all movements are executed in relation to a system of coordinates accelerating uniformly as if in absence of gravity field. I conjectured that if this principle is applicable to any other events then it can be applied to system of coordinates not accelerating uniformly.

These reflections occupied me from 1908 to 1911 and I figured that the principle of relativity needed to be extended (equations should retain their forms in non uniform accelerations of coordinates) in order to account for a rational theory of gravitation; the physical explanation of coordinates (measured by rules and clocks) has to go.

I reasoned that if in reality “a field of gravitation used in system of inertia” did not exist it could still be served in the Galilean expression that “a material point in a 4-dimensional space is represented by the shortest straight line”. Minkowski has demonstrated that this metric of the square of the distance of the line is a function of the squares of the differential coordinates.  If I introduced other coordinates by non linear transformation then the distance of the line stay homogeneous if coefficients dependent on coordinates are added to the metric (this is the Riemann metric in 4-dimension space not submitted to any gravity field). Thus, the coefficients describe the field of gravity in the selected system of coordinates; the physical significance is just related to the Riemannian metric. This dilemma was resolved in 1912.

Two other problems had to be resolved from 1912 to 1914 with the collaboration of Marcel Grossmann.

The first problem is stated as follows: “How can we transfer to a Riemannian metric a field law expressed in the language of restrained relativity?”  I discovered that Ricci and Levi-Civia had answered it using infinitesimal differential calculus.

The second problem is: “what are the differential laws that determine the coefficients of Riemann?”  I needed to resolve invariant differential forms of the second order of Riemann’s coefficients. It turned out that Riemann had also answered the problem using curb tensors.

“Two years before the publication of my theory on General Relativity” said Einstein “I thought that my equations could not be confirmed by experiments. I was convinced that an invariant law of gravitation relative to any transformations of coordinates was not compatible with the causality principle. Astronomic experiments proved me right in 1915.”

Note:  I recall that during my last year in high school my physics teacher, an old Jesuit Brother, filled the blackboard with partial derivatives of Newton’s equation on the force applied to a mass; then he integrated and he got Einstein’s equation of energy which is  mass multiplied by C square. At university, whenever I had problems to solve in classical mechanics on energy or momentum conservation I just applied the relativity equation for easy and quick results; pretty straightforward; not like the huge pain of describing or analyzing movements of an object in coordinate space.


adonis49

adonis49

adonis49

July 2020
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

Blog Stats

  • 1,399,111 hits

Enter your email address to subscribe to this blog and receive notifications of new posts by email.adonisbouh@gmail.com

Join 746 other followers

%d bloggers like this: