Adonis Diaries

Posts Tagged ‘teaching

Different urgent learning resolutions  

I got this revelation.  Schools use different methods for comprehending languages and natural sciences.  Kids are taught the alphabet, words, syntaxes, grammars, spelling and then much later are asked to compose essays.  Why this process is not applied in learning natural and behavioral sciences?

 

I have strong disagreement on the pedagogy of learning languages.  First, we know that children learn to talk years before they can read; why then kids are not encourage to tell verbal stories before they can read?  Why kids’ stories are not recorded and then translated into the written words to encourage the kids into realizing that what they read is indeed another story telling medium?

Second, we know that kids have excellent capabilities to memorize verbally and visually whole short sentences before they understand the fundamentals. Why don’t we develop their cognitive abilities before we force upon them the traditional malignant methodology?  The proven outcomes are that kids are devoid of verbal intelligence, hate to read, and would not attempt to write even after they graduate from universities.

 

Arithmetic and math are used as the foundations for learning natural sciences. We learn to manipulate equations; then solving examples and problems by finding the proper equation that correspond to the natural problem (actually, we are trained to memorize the appropriate equations that apply to the problem given!). 

Why we are not trained to compose a story that corresponds to an equation, or set of equations (model)?

If kids are asked to compose essays as the final outcome of learning languages then why students are not trained to compose the natural phenomena from given set of equations? Would not that be the proper meaning for comprehending the physical world or even the world connected with human behavior? 

Would not the skill of modeling a system be more meaningful and straightforward after we learn to compose a world from a model or set of equations?  Consequently, scientists and engineers, by researching natural phenomena and man-made systems that correspond to the mathematical models, would be challenged to learn about natural phenomena; thus, their modeling abilities would be enhanced, more valid, and more instructive!

If mathematicians are trained to compose or view the appropriate natural phenomenon and human behavior from equations and mathematical models then the scientific communities in natural and human sciences would be far richer in quality and quantity.

I hate to talk, read, and write. Oh, and I hate math: Different teaching resolutions… 

 

I got this revelation. 

Schools use different methods for comprehending languages and natural sciences.  Kids are taught the alphabet, words, syntax, grammars, spelling and then much later, they are asked to compose essays.  Why this process is not applied in learning natural sciences?

I have strong disagreement on the pedagogy of learning languages. 

First, we know that children learn to talk years before they can read. Why kids are not encourage to tell verbal stories before they can read?  Why kids’ stories are not recorded and then translated into the written words to encourage the kids into realizing that what they read is indeed another story telling medium?

Second, we know that kids have excellent capabilities to memorize verbally and visually whole short sentences before they understand the fundamentals. Why don’t we develop their cognitive abilities before we force upon them the traditional malignant methodology?  The proven outcomes are that kids are devoid of verbal intelligence, hate to read, and would not attempt to write even after they graduate from universities.

Arithmetic and math are used as the foundations for learning natural sciences. We learn to manipulate equations; then solving examples and problems by finding the proper equation that correspond to the natural problem (actually, we are trained to memorize the appropriate equations that apply to the problem given!).  Why we are not trained to compose a story that corresponds to an equation, or set of equations (model)?

If kids are asked to compose essays as the final outcome of learning languages, then why students are not trained to compose the natural phenomena from given set of equations?

Would not that be the proper meaning for comprehending the physical world or even the world connected with human behavior? 

Would not the skill of modeling a system be more meaningful and straightforward after we learn to compose a world from a model or set of equations?  Consequently, scientists and engineers, by researching natural phenomena and man-made systems that correspond to the mathematical models, would be challenged to learn about natural phenomena. Thus, their modeling abilities would be enhanced, more valid, and more instructive!

If mathematicians are trained to compose or view the appropriate natural phenomenon and human behavior from equations and mathematical models then the scientific communities in natural and human sciences would be far richer in quality and quantity.

Article #42  (April 6, 2006)

 “New semester, new approach to teaching the HF course”

This semester ten students enrolled for my class; only one is a computer engineer finishing his degree and the remaining are industrial engineers.  As a reminder, this course is required for IE and the other engineering disciplines managed to open up new elective courses and were trying to market them at the expense of the wishes of many students who wanted to take my course and their petitions were denied.

With a class, one fourth its usual number, I had to capitalize on the advantages of smaller classes, once the shock is under control.  This semester, methods applied in human factors engineering are the focus and the reduction to half the previous semester of body of knowledge in the course materials might encourage my class to appreciate the efforts and time invested by the pool of human factors researchers and professionals to make available practical design guidelines for the other engineering professions.

Whereas in the previous semesters I shun away from exposing my class to new methods, except teaching them explicitly the concept of controlled experimentations, the differences among dependent, independent and controlled variables and correcting their misunderstanding, thinking that there was an abundance of knowledge to assimilate for a meager semester, I boldly changed direction in my teaching approach by investing more time on exposing and explaining the various methods that human factors might be applying in their profession.  The first assignment was using excel to compare 40 methods used in human factors, industrial engineering, industrial psychology, and designers of intelligent machines.  This assignment was a version of article #14, about the taxonomy of methods, from 20 articles that I wrote the previous years and offered them as an introduction to the course, in addition to the course materials. The students were supposed to select five categories from more than the dozen ways to classifying methods such as definition, purpose, applications, inputs, processes, procedures, output/product, mathematical requirements, disciplines teaching them, advantages, disadvantages, sources/links, connections with other methods, and comments.

I expected that, as engineers, they would logically select for columns applications, input, procedure, output, and comments because they are what define a method but somehow they opted for applications, procedures, advantages, disadvantages, and comments mainly because it is how the internet offer information.  After 3 students submitted their assignment on time I handed them over 40 summary sheets for the 16 methods used to analyzing a system or a mission, at least 2 sheets for each of 16 methods, one sheet on the purpose, input, procedure, and output/product of the method and the other sheets as examples of what the output is expected to look for presentation. I then asked the less performing students to concentrate on only the 16 methods for their assignment and most of them did not submit this assignment even two months later.

So far I used up six sessions for methods or related topics such as the methods applied in the process of analyzing systems’ performance, psychophysical procedures, the fundamentals of controlled experimentation methods, human factors performance criteria, and what human factors measure in their experiments. 

As for the body of knowledge I extract a few facts from experiments and asked them to participate in providing me with the rationales or processes that might explain these facts. For example, if data show that females on average are two third the strength of males then what could be the underlying causes for that discovery?  Could that fact be explained by the length of the muscles, the cross section thickness of the muscles, the number of muscle fibers, or the length of the corresponding bones?

Facts are entertaining but I figured that they are big boys to be constantly entertained while shovelful of money is being spent for their university education. Facts are entertaining but there have to come a time when these big boys stop and wonder at the brain power, Herculean patience, and hard work behind these amusing sessions.

The next assignment was to observe the business of the family’s bread earner, note down the minute tasks of his typical day work, learn about the business by attempting to generate detailed answers from a questionnaire they have to develop based on a set of investigative query and problems related to human factors performance criteria in the assignment sheet, and to report back what are the routine and daily tasks that enabled the students to join a university.  Three students worked with their fathers’ in summer times and enjoyed the assignment; the remaining students could not shake off their 8th grade habits, wrote the questionnaire, mailed it, and waited for the answers.  I was expecting that the students would apply the methodology they learned in analyzing systems such as activity, decision, and task analyses but the good stuff was not forthcoming. To encourage them to cater to the business that they might inherit, I assigned them a lecture project that would generate the requisite analyses with a clear objective of focusing on near-accidents, foreseeable errors, safety of the workers and heath conditions in the work place.

So far, the products of the two quizzes were complete failures; although most of the questions in the second quiz were from the same chapter sources as the first quiz, it is amazing how ill prepared are the students for assimilating or focusing on the essential ideas, concepts, and methods. So far, with a third of the semester over, I can points to only two students who are delivering serious investment in time, hard work, and excitement and are shooting for a deserved grade of A.

 

Article “31 (December 18, 2005)

 “A seminar on a multidisciplinary view of design”  

The term “designing” is so commonly used that its all encompassing scope has lamentably shrunken in the mind of graduating engineers. This talk attempts to restore the true meaning of design as a multidisciplinary concept that draw its value from the cooperation and inputs of many practitioners in a team.

This is a scenario of a seminar targeting freshmen engineers, who will ultimately be involved in submitting design projects, is meant to orient engineers for a procedure that might provide their design projects the necessary substance for becoming marketable and effective in reducing the pitfalls in having to redesign. The ultimate purpose is to providing the correct designing behavior from the first year.

Answering the following questions might be the basis of acquiring a proper behavior in design projects, which should be carried over in their engineering careers.  Many of these questions are never formally asked in the engineering curriculum.

Q1. What is the primary job of an engineer?   What does design means?  How do you perceive designing to look like?

A1. The discussion should be reopened after setting the tone for the talk and warming up the audience to alternative requirements of good design.

Q2. To whom are you designing?  What category of people? Who are your target users? Engineer, consumers, support personnel, operators?

A2. Generate from audience potential design projects as explicit examples to develop on that idea.

Q3. What are your primary criteria in designing?  Error free application product? Who commit errors?  Can a machine do errors?

A3.  Need to explicitly emphasize that error in the design and its usage is the primary criterion and which encompass the other more familiar engineering and business criteria

Q4. How can we categorize errors?  Had you any exposure to error taxonomy? Who is at fault when an error is committed or an accident occurs?

A4. Provide a short summary of different error taxonomies; the whole administrative and managerial procedures and hierarchy of the enterprise need also to be investigated.

Q5. Can you foresee errors, near accidents, accidents in your design?

A5. Take a range oven for example, expose the foreseeable errors and accidents in the design, babies misuse and the display and control idiosyncrasy.

Q6. Can we practically account for errors without specific task taxonomy?

A6. Generate a discussion on tasks and be specific on a selected job.

Q7. Do you view yourself as responsible for designing interfaces to your design projects depending on the target users? Would you relinquish your responsibilities for being in the team assigned to designing an interface for your design project? What kinds of interfaces are needed for your design to be used efficiently?

A7. Discuss the various interfaces attached to any design and as prolongement to marketable designs.

Q8. How engineers solve problems?  Searching for the applicable formulas? Can you figure out the magnitude of the answer?  Have you memorized the allowable range for your answers from the given data and restriction imposed in the problem after solving so many exercises? Have you memorize the dimensions of your design problem?

A8.  Figure out the magnitude and the range of the answers before attempting to solve a question; solve algebraically your equations before inputting data; have a good grasp of all the relevant independent variables.

Q9. What are the factors or independent variables that may affect your design project? How can we account for the interactions among the factors?

A9. Offer an exposition to design of experiments

Q10. Have you been exposed to reading research papers? Can you understand, analyze and interpret the research paper data? Can you have an opinion as to the validity of an experiment? Would you accept the results of any peer reviewed article as facts that may be readily applied to your design projects?

A10.  Explain the need to be familiar with the procedures and ways of understanding research articles as a continuing education requirement.

Q11. Do you expect to be in charged of designing any new product or program or procedures in your career? Do you view most of your job career as a series of supporting responsibilities; like just applying already designed programs and procedures?

Q12. Are you ready to take elective courses in psychology, sociology, marketing, business targeted to learning how to design experiments and know more about the capabilities, limitations and behavioral trends of target users? Are you planning to go for graduate studies and do you know what elective courses might suit you better in your career?

A12.  Taking multidisciplinary courses enhances communication among design team members and more importantly encourages reading research papers in other disciplines related to improving a design project. Designing is a vast and complex concept that requires years of practice and patience to encompass several social science disciplines.

Q13. Can you guess what should have been my profession?

A13.  My discipline is Industrial engineering with a major in Human Factors oriented toward designing interfaces for products and systems. Consequently, my major required taking multidisciplinary courses in marketing, psychology and econometrics and mostly targeting various methodologies for designing experiments, collecting data and statistically analyzing gathered data in order to predict system’s behavior.

 


adonis49

adonis49

adonis49

November 2020
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Blog Stats

  • 1,441,222 hits

Enter your email address to subscribe to this blog and receive notifications of new posts by email.adonisbouh@gmail.com

Join 784 other followers

%d bloggers like this: